const currentPage = dv.current().file;
const dailyPages = dv.pages('"0-Daily"').sort(k=>k.file.name, "asc");
const currentPageName = currentPage.name;
const index = dailyPages.findIndex((e) => {return e.file.name === currentPageName});
if (index < 1) {
	dv.table(["File", "Created", "Size"],[]);
} else {
	const lastIndex = index - 1;
	const lastPage = dailyPages[lastIndex].file;
	const allPages = dv.pages().values;
	const searchPages = [];
	
	const lastTime = dv.parse(lastPage.name);
	const currentTime = dv.parse(currentPage.name);
 
	debugger;
	
	for (let page of allPages) {
		const pageFile = page.file;
		if (pageFile.cday > lastTime && pageFile.cday <= currentTime) {
		  searchPages.push(pageFile);
		}
	}
	dv.table(["File", "Created", "Size"], searchPages.sort((a, b) => a.ctime > b.ctime ? 1 : -1).map(b => [b.link, b.ctime, b.size]));
}
 

探索上下文更多的模型

在网上冲浪的时候,发现 Mosaic-ML , 官方介绍 里讲

  • Licensed for commercial use(unlike LLaMA).
  • Trained on a large amount of data(1T tokens like LLaMA vs. 300B for Pythia, 300B for OpenLLaMA, and 800B for StableLM).
  • Prepared to handle extremely long inputsthanks toALiBi(we trained on up to 65k inputs and can handle up to 84k vs. 2k-4k for other open source models).
  • Optimized for fast training and inference(viaFlashAttentionandFasterTransformer)
  • Equipped with highly efficient open-source training code.

能够支持最多 65k 的输入。比现在的 4k 多得多得多。

在 claude 目前没有 API 的情况下,尝试一下。

试用

MPT-7B

https://huggingface.co/spaces/mosaicml/mpt-7b-chat

没有反应
505

chatgpt

500

脚本

https://colab.research.google.com/drive/1nDVSUEoW5lsmjiVCpHokP15ozc4Jqj-i?usp=share_link

响应

500

简单试验了一下, 效果不好。这种简单的总结都总结不出来。

总结

还是商业开源的好, GPT-3.5-turbo 效果应该是比开源的好得多的多。

后面等等 Claude 确认下吧。